
Wyvern: Improving
Architecture-Based Security

via a Programming Language
A/Prof Alex Potanin

1

Software Security is
a Big Problem

2

Why Systems are
Vulnerable?

We "know" how to code securely

Follow the rules: CERT, Oracle, ...

Technical advances: types, memory safety

But we still fail too often!

Root causes

Coding instead of engineering

Human limitations

Unusable tools

3

Our Approach: Usable
Architecture-Based Security

Engineering:
An architecture/design

perspective

Formal Modelling: A mathematical perspective

Usability:
A human perspective

Secure systems
development

λ
4

The Wyvern
Programming Language

Designed for security and
productivity from the ground up

General purpose, but emphasising
web, mobile, and IoT apps

http://wyvernlang.github.io/

5

The Wyvern
Programming Language

But you might ask: "Isn't there a trade
off between security and productivity?

What is Wyvern's secret sauce?

6

Security

Productivity

7

Shifting the
Tradeoff Curve

8

Security

Productivity

Better expressing and enforcing design could
fundamentally shift the tradeoff curve

Wyvern

Design goals

Sound, modern language design

Type- and memory- safe, mostly
functional, advanced module system

Incorporate usability principles

Security mechanisms built in

9

Hello, world!

require stdout

stdout.print("Hello, world!\n")

10

SQL Command
Injection

11

SQL Injection: a
Solved Problem?

Evaluation

Usability: unnatural, verbose

Design: string manipulation captures domain poorly

Language semantics: largely lost - just strings

No type checking, IDE services, ...

PreparedStatement s = connection.prepareStatement(
 "SELECT * FROM Students WHERE name = ?;");
s.setString(1, userName);
s.executeQuery();

Prepare a statement
with a hole

Fill the hole
securely

λ
12

Wyvern: Usable
Secure Programming

A SQL query in Wyvern:
connection.executeQuery(~)

 SELECT * FROM Students WHERE name = {studentName}

Claim: the secure version more natural
and more usable

No empirical evaluation, yet

~ introduces a domain-
specific language (DSL) on the

next indented lines

Semantically rich DSL. Can provide type
checking, syntax highlighting, autocomplete, ...

Safely incorporates dynamic data -
as data, not a command

13

Technical Challenge:
Syntax Conflicts

Language extensions as libraries has been tried
before

Example: SugarJ/Sugar* [Erdweg et al, 2010; 2013]

import XML, HTML

val snippet = ~

 How do I parse this example?

Is it XML or HTML?

λ

14

Syntax Conflicts:
Wyvern's Solution

import metadata XML, HTML

val snippet : XML = ~

 How do I parse this example?

metadata keyword indicates we are
importing syntax, not just a library

No ambiguity: the compiler loads the unique
parser associated with the expected type XML

Syntax of language completely unrestricted -
indentation separates from host language

15

Technical Challenge:
Semantics

import metadata SQL
val connection = SQL.connect(...)
val studentName = input(...)
connection.executeQuery(~)
 SELECT * FROM Students WHERE name = {studentName}

λ
Q: Is it safe to run custom parser at compile time?
A: Yes - immutability types used to ensure imported
metadata is purely functional, has no network access, etc.

Language definition includes
custom type checker - can verify
query against database schema

Splicing (as in genes) theory ensures
capture-avoiding substitution in
code generated by SQL extension -
safe to use host language variables

SQL extension has access to
variables and their types in
Wyvern host language

16

17

How do you enter
and exit a TSL?

In the base language, several inline delimiters
can be used to create a TSL literal:

If you use the block delimiter tilde (~), there are
no restrictions on the subsequent TSL literal.

Indentation ("layout") determines the end of
the block

18

How do you associate
a TSL with a type?

19

Why not associate a
grammar with a type?

20

TSL Benefits

Modularity and Safe Composability

Identifiability (easily see which DSL
due to expected type)

Simplicity

Flexibility (whitespace delimited
blocks => arbitrary syntax)

21

TSL Limitations

Decidability of Compilation

No editor support (coming?)

22

Our Approach: Usable
Architecture-Based Security

Engineering:
Express design in

domain-specific way

Formal Modelling: Type safety, variable hygiene, conflict-free extensions

Usability:
Natural syntax, enabling

IDE support

DSL support in
Wyvern

λ
23

An Old Idea:
Layered Architectures

Lowest layer: an unsafe, low-level
library

Middle layer: a higher-level
framework

Top layer: the application

Code must obey strict layering

Many variants:

Secure networking framework

Safe SQL-access library

Replicated storage library

24

[Dijkstra 1968]

Application Code

Safe high-level framework

Unsafe low-level library

RQ: Can we use capabilities to enforce layered resource access?
* Capability: an unforgeable token controlling access to a resource [Dennis & Van Horn 1966]

Architecture: Principle
of Least Privilege (PoLP)

Every module must be able to
access only the resources
necessary for its legitimate
purpose [Saltzer & Schroeder
75]

Architectural layering example:
Only Safe SQL library may
access the low-level SQL
interface

All other application code

Safe SQL DSL Library

String-based SQL Library

25

Module Linking as
Architecture

require db.stringSQL

application.run()

26

To access external resources like a database,
main requires a capability from the run-time
system. A capability is an unforgeable token

controlling access to a resource.

stringSQL

Module Linking as
Architecture

require db.stringSQL

import db.safeSQL

import app.sqlApplication

val sql = safeSQL(stringSQL)

val application = sqlApplication(sql)

application.run()

27

stringSQL

safeSQL

We must instantiate a sqlApplication object, passing it
the resources it needs. We pass only a capability to
the safe library.

We can import code modules, but they have no
ambient authority to access resources (cf Newspeak).
sqlApplication cannot access the database by itself.

Module Linking as
Architecture

require db.stringSQL

import db.safeSQL

import app.sqlApplication

val sql = safeSQL(stringSQL)

val application = sqlApplication(sql)

application.run()

28

stringSQL

safeSQL

module def sqlApplication(safeSQL : db.SafeSQL)
def run() : Int
 // application code

module def safeSQL(strSQL : db.StringSQL)
// implement ADT in terms of strings

sqlApplication

How Hard to Link it
All Up?

Most Wyvern modules don't have state, can be freely imported

Statically tracked: stateful modules/objects and resource types

type SetM
 resource type Set
 def add(v : Int)
 def isMember(v : Int) : Bool
 def makeSet() : Set

module setM : SetM

module def client(aFile : File)
import setM ...

resource types capture state or system access: other types do not

Useful design documentation; e.g. MapReduce tasks should be stateless

Supports powerful equational reasoning, safe concurrency, etc.

29

resource type File
 def write(s : String)

Type of modules is pure; no static state. Objects
created by module may be stateful resources, though.

Resources must be passed in; pure
modules can just be imported.

Provides access
to OS resource

Checking PoLP with
Effects

// in signature of the rawSQL module

effect UnsafeQuery

type Connection

def connect(...) : Connection

def query(q:String) : {UnsafeQuery} Data

// client code

def getData(input : String) : Data

 rawSQL.query("SELECT * FROM Students WHERE name = '" + input + "';")

30

The unsafe SQL library defines
an UnsafeSQL effect

Query operations have an
UnsafeQuery effect

Error: getData() must declare
effect rawSQL.UnsafeQuery

Has effect rawSQL.UnsafeQueryNB! In Wyvern Effect is a
"Resource.Operation" pair.

Checking PoLP with
Effects

// in signature of the rawSQL module

effect UnsafeQuery

type Connection

def connect(...) : Connection

def query(q:String) : {UnsafeQuery} Data

// client code

def getData(input : String) : {rawSQL.UnsafeQuery} Data

 rawSQL.query("SELECT * FROM Students WHERE name = '" + input + "';")

31

The unsafe SQL library defines
an UnsafeSQL effect

Query operations have an
UnsafeQuery effect

All dangerous code marked
with effect

Has effect rawSQL.UnsafeQueryNB! In Wyvern Effect is a
"Resource.Operation" pair.

Effect Abstraction
Issue: won't users of the safeSQL library have an UnsafeQuery
effect, if safe SQL is built on rawSQL?

module def safeSQL(rawSQL : RawSQL) : SafeSQL

type SQL

 metadata ...

abstract effect SafeQuery = rawSQL.UnsafeQuery

def query(SQL) : {SafeQuery} Data

 ...

32

The safeSQL functor
uses a rawSQL module

Defines a SQL ADT with
metadata for parsing

The SafeQuery effect is
defined in terms of
UnsafeQuery. This

definition is abstract -
hidden from clients.

Now clients have effect
safeSQL.SafeQuery

Q: Can't any library do this, potentially hiding unsafe queries?
A: Potentially, but can mechanically check only trusted libraries do so

Effect System
Usability

Isn't it a pain to declare all these effects?

Case in point: exception specifications in Java

We can bound a module's effects by its capabilities

No need to effect-annotate the module

Does assume capability-safety (cf JS Frozen Realms)

module def client(safeSQL : SafeSQL) : Client

import ...

33

Client Code

Safe SQL DSL Library

Client can have effect
safeSQL.SafeQuery (and nothing else)

If safeSQL defines higher-order functions, make
sure the argument is allowed to have the

SafeQuery effect (cf contravariant subtyping).Imports may not be
resources - no effects.

Wyvern Effects
Example

34

Editor

Logger

Plugin

Annotated

Not Annotated

Configured to log either to
a file or a network

uses

uses uses

Importing Effect
Unannotated Code

35

36

Importing Effect
Unannotated Code

37

Importing Effect
Unannotated Code

38

Importing Effect
Unannotated Code

39

Importing Effect
Unannotated Code

Our Approach: Usable
Architecture-Based Security

Engineering:
Architectural restrictions

on resource use

Formal Modelling: effect- and capability- safety, effect bounds

Usability:
Bound effects based on

architecture

Effects and
capabilities in

Wyvern

λ
40

Questions?

41

